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NUMERICAL CALCULATION OF THE MULTIPLICITY 
OF A SOLUTION TO ALGEBRAIC EQUATIONS 

HIDETSUNE KOBAYASHI, HIDEO SUZUKI, AND YOSHIHIKO SAKAI 

ABSTRACT. A method to calculate numerically the multiplicity of a solution to 
a system of algebraic equations is presented. The method is an application of 
Zeuthen's rule which gives the multiplicity of a solution as the multiplicity of 
a united point of an algebraic correspondence defined naturally by the system. 
The numerical calculation is applicable to a large scale system of algebraic 
equations which may have a solution that we cannot calculate the multiplicity 
by a symbolic computation. 

1. INTRODUCTION 

In this paper, we assume a polynomial has coefficients in the field C of complex 
numbers. We suppose that a system 

(1) fi(Xi) Xn) = Oi 
. 

fn(Xi 
. 

Xn = 

of algebraic equations have a finite number of solutions. There are some methods to 
obtain the multiplicity of a solution by using symbolic calculations, but a symbolic 
computation is not executable for a large scale system. Our aim is to present a 
numerical method to calculate the multiplicity of a solution to a large system of 
algebraic equations. 

Our algorithm is an application of Zeuthen's rule in algebraic geometry (see 
[1], [2]). Since we need some notations related to an algebraic correspondence, we 
introduce them briefly. 

We denote by C the curve defined by a two variable polynomial cr(u, v) in the 
affine plane C2: 

C {(a, b) E C2lo-(a, b) = O}. 

If a point (a, b) is on the curve C, we say the number a corresponds to the number 
b. Thus the curve C gives an algebraic correspondence between complex numbers 
which we denote by Tc. The adjective "algebraic" is used to imply the correspon- 
dence is defined by a polynomial. 

Let the polynomial cr(u, v) be of degree Ol in u and / in v. For almost any 
number a, the one variable equation cr(a, v) = 0 with respect to v has / roots. 
Similarly cr(u, b) = 0 has Ol roots for almost any number b. Hence we call the 
correspondence Tc an (al, 3) -correspondence. If a number a corresponds to itself 
under the correspondence Tc, we call a a united point of Tc. The united points 
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are determined by the one variable equation cr(u, u) = 0. Counting the number of 
roots of the equation o-(u, u) = 0 with multiplicity, we see that the correspondence 
Tc has Ol + / united points1. 

In the next section, we make from the system (1) an algebraic correspondence 
between numbers, and define the multiplicity of a solution to the system (1) as the 
multiplicity of a united point of the correspondence. And then we introduce the 
theorem "Zeuthen's rule" from which we derive a method to calculate numerically 
the multiplicity of a united point. In Section 3, we present a method to calculate 
the multiplicity using Zeuthen's rule. We show a simple application of Zeuthen's 
rule gives only an approximate value of the multiplicity. In Section 4, we show a 
procedure which gives in almost any case an interval containing the multiplicity 
value. Since the multiplicity value is an integer, if the interval is small enough 
and contains only one integer, then we can obtain the exact value of the multiplic- 
ity. Moreover, we discuss an exceptional case where the interval obtained by the 
procedure fails to contain the multiplicity. 

Section 5 is devoted to a discussion on execution time. The preliminary part of 
our method is executed by a symbolic computation to avoid making unnecessary 
numerical errors. The machine we used has a CPU with a vector processor but 
whose MIPS value is not high. So, symbolic computation took relatively longer 
execution time compared to that on commonly used work stations. In the last- 
section, we present several examples. They show that the intervals are small enough 
to determine the exact value of the multiplicity. An example in Section 4 shows even 
if we encounter the rare case that we have good approximations of the multiplicity 
(but from one side). 

2. ALGEBRAIC CORRESPONDENCE DEFINED BY THE SYSTEM 

We consider the system (1) in n-dimensional projective space 1PF with the ho- 
mogeneous coordinate system (XO, X1,. , Xn), where xi Xi/Xo. Then we have 
a system 

(2) Fi(X0,X1,... ,Xn) =Xifi(X1/X0,... ,Xn/XO) 0 (i 1, -rvn) 

of homogeneous polynomials. Here di is the degree of the polynomial fi in the 
system (1). The system (2) has di ... dn solutions in Ip by Bezout's theorem. If a 
point (al, * , a) E Cn is a solution to the system (1), then a point (1, a,... , an) E 
IPn is a solution to the homogeneous system (2), and the multiplicity of these two 
solutions have the same value. 

A set 

(3) F = {Q E pn Fi(Q) = O} 

of zero points of the first equation of the system (2) is a hypersurface. Similarly, a 
set 

(4) C = fp E pn? I F2(P) = =Fn(P) = O} 

of common zeros of polynomials from the system (2) is a space curve. We take a 
point 0 remote from C and F. Let P be a point on the;curve C, and let 1 be a line 
joining P and 0. Then we have intersection points of 1 and the hypersurface F. We 

1Precisely, we have to consider a curve T(uo,ul ;vo,vl) uovgc(u1/uo,vi/vo) = 0 in bi- 
projective space IPl x IPl as an algebraic correspondence between projective lines Pl 
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denote by Q one of the intersection points. We call a pair (P, Q; 1) a fundamental 
form, and we denote by E1 the set of all fundamental forms. 

In the next subsection, we define an algebraic correspondence between projective 
lines determined by the system (2). 

2.1. Construction of the correspondence. We take an (n - 2)-dimensional 
linear subspace S in the projective space IP such that 

* not including the point 0, 
* not meeting the curve C, 
* not included in the hypersurface F. 

Let P be a point in the projective space. We denote a hyperplane spanned by S 
and P as S V P. Then it is easy to see that the set of hyperplanes (called a pencil 
of hyperplanes) 

H(= {S V P; P PC} 

is parametrized by the point of the projective line IP'D; or, by the projective duality, 
we can identify a hyperplane in NH with a point in P' 

Let E1 be the set of fundamental forms defined by the system (2) as above. 

Proposition 1. Let (P, Q; 1) be a fundamental form in E1. The correspondence 
of S V P to S V Q defines an algebraic (d1 ... dn, d1 ... dn)-correspondence between 
projective lines. 

Proof. Let H be a hyperplane of the pencil NH. Then H meets the curve C at 
d2. dn points Pj. A line lj joining Pj and 0 meets the hypersurface F at d1 points 

Qj,k. We have (Pj,Qj,k,lj) E El, and the hyperplanes S V Pj E H all coincide. 
Hence to one hyperplane in NH, we have d1d2 ... dn corresponding hyperplanes. 

Conversely, let H be a hyperplane of the pencil. Then H n F is an (n - 2)- 
dimensional algebraic variety of order d1. A cone V based on H n F with a vertex 
O meets the curve C in d1 dn points Pj. Then a line lj joining Pj and 0 meets 
HnF at points Qj. Hence (Pj, Qj; lj) E El and we see that to a hyperplane H there 
are d1 d2 ... dn hyperplanes of the form S V Pj . This shows that the correspondence 
is of type (di d2 . dnv d1d2 ... dn) . 

We show how we parametrize the hyperplanes of the pencil of hyperplanes NH. 
Let Ho(Xo,... , Xn) = 0 and H1(Xo... , Xn) = 0 be two distinct hyperplanes 
containing the linear space S. We parametrize NH as coHo + c1H, = 0, where co, cl 
are complex numbers not both zero. Then we have a bijective map from the set 
of pairs (co, cl) of the numbers to a point in the projective line IP' . Thus we can 
identify NH and IP' (this identification is called projective duality). Thus we obtained 
a (d1 ... dn, d1 ... dn)-correspondence between projective lines. 

Finally, we prove that the correspondence is algebraic. We parametrize original 
NH as 

UOHO (Xo )., Xn) + ul H, (Xo). ... i Xn) = 

and destination NH as 

OHOe(Xoy, Xn) +v W hHa(Xv r eXn)iO 

respectively. We have n equations 
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with the coordinates P = (po, p,P) of the fundamental form (P, Q; 1) E E1, and 
two equations 

(6) ~~~vOHo(qo: , q.) + vlHl(qo,, q.) = 0: 
(6) Fi (qo, ... qn) = 

with the coordinates Q = (qo ... , qn). Since three points P, Q, and Q= (oo,... , On) 
are colinear, we have n - 1 equations 

?O ?1 Qi 

(7) Po Pi Pi =0 (i =2, , n). 
qo qi qi 

Using the general elimination method or Grbbner basis method, we can eliminate 
ql, ,. qn from a system of n + 1 equations (6) and (7). Then we have an equation 

(8) g(uo,Ul;vo,v1;Po,... ,Pn)q3 = 0 

for some non-negative integer s, where g(uo, UI; vO, vi;pO,... ,Pn) is a polynomial 
which is homogeneous in three groups of variables (uo, u1), (vo, vl) and (po, , Pn) 
respectively. If we choose a homogeneous coordinate properly, we have only to 
consider points (Po,... ,Pn) and (qo... , qn) such that po #& 0 and qo #& 0. So (8) 
is equivalent to 

(9) g(uo,Ul; vOVl;PO,... ,Pn) = 0. 

Similarly, we can eliminate P1, . . . , Pn from a system of n + 1 equations (5) and (9), 
and have an equation 

o-(uo, ui; Vo, VO)po 0 

for some non-negative integer t, where cr(uo, ul; vo, vl) is a polynomial with variables 
(uo0 u1) and (vo, vi). Therefore we get a defining polynomial equation 

(10) cr(uo, ui;vo, VI) = 0 

of the correspondence. This shows that the correspondence is algebraic. D 

Hereafter, we denote by T, the correspondence of the projective line to itself 
derived as above. 

2.2. United points of the correspondence. The (d1 ... dn,d1 ... dn)-correspon- 
dence T has 2d1 ... dn united points which come from the hyperplanes such that 
S V P = S V Q with (P, Q; 1) E El. Coincidences of the hyperplanes arise from the 
two cases: 

(1) coincidence of the points P and Q. This means P is a solution to the system 
of algebraic equations; 

(2) the line PQ meets the (n - 2)-linear space S. 
From the theory of algebraic correspondence, we see that the number of united 
points arising from the case (1) is dld2 ... dn. This fact is taken to be a proof of 
Bezout's theorem. Hence, we see the multiplicity of united points coincide with 
the multiplicity of a solution under additional conditions to the point 0 and the 
(n - 2)-dimensional subspace S:. 
[Condition 1] 

(1) For each solution A of the system (2), the hyperplane S V A does not contain 
the other solution of (2). 

(2) A hyperplane S V 0 does not include any solution A to the system. 
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2.3. Zeuthen's rule. Since the multiplicity of a united point (Uo, U1) E IPl of the 
correspondence T is a local property, we have only to consider a united point within 
an affine plane C2 including a pair (U, U) instead of Pl x Pl. Here U = U1/Uo if 
Uo :& 0 or U = Uo/U1 otherwise. Zeuthen's rule giving an algorithm to calculate 
the multiplicity (see [1]) is stated as: 

Theorem 1. (Zeuthen's rule) Let U be a united point of an algebraic correspon- 
dence between numbers defined by o-(u, v) =0. Given a number a, let 31,... , 3, be 
roots to oc(a, v) = 0 such that they tend to U according as al tends to U. Then if 
the order of the infinitesimal of /3k - al measured by U - al is ek , that is 

0k - a |_ Ck|U -alk, 

with constant Ck, the multiplicity of U is 
s 

Eek. 
k=1 

By virtue of this theorem, we can calculate the multiplicity by a numerical 
calculation. We have to use a symbolic calculation to obtain the defining polyno- 
mial cr(u, v) = 0 of the correspondence by repeated elimination procedures or the 
Grobner basis method. For a large system of algebraic equations, the elimination 
procedure requires a lot of memory and it happens that we cannot execute the 
symbolic computation. 

To make it a convenient form to employ a numerical calculation, we express 
Theorem 1 in terms of the fundamental forms. 

Theorem 2. Let C be the curve (4), and let F be the hypersurface (3). Let S be 
an (n - 2)-dimensional subspace satisfying condition 1. Let A be a solution to the 
system (2). By a projective transformation, we transform S in the hyperplane at 
infinity and A still irn the finite area. Let Ho be a hyperplane S V A, and let Hh be 
a hyperplane shifting Ho to its normal direction by a small number h. Among the 
intersection poirnts of Hh and the curve C, we suppose that P1,... , Pr tend to A 
according as h tends to zero. Similarly among intersection points of the hypersur- 
face F and the lirne lj join'inrg Pj and 0, we suppose that Qj,i... 1, Qj,s tend to A 
according as Pj tends to A. 

We measure the order of the irnfinitesimal of PjQjk by h as 

(11) PjQj,k = Cj,kh'i,k 

where PjQj,k is the Euclidean distance of SVPj and S V Qj,k and Cj,k are constants; 
then the multiplicity of A is equal to 

r s 

(12) E E ej,k- 
j=1 k=1 

Here we check that this theorem is equivalent to Theorem 1. We represent the 
hyperplanes S V A, S V Pj and S V Qj,k by ratio of parameters a, pj, and qj,k 

respectively (see the next section). Since S V Pi = Hh, we have Pj = a + h. Then 
cr(a+ h, qi,k) = 0 by definition of Tc, and by the hypothesis qj,k tend to a according 
as h tends to zero. Hence Theorem 2 is the same as Theorem 1. 

By Theorem 2 we can calculate directly the multiplicity of a solution to the 
system of algebraic equations. We will show in Section 4 that for almost any choice 
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of S, repeating this procedure four times with different h's, we can obtain an interval 
containing the multiplicity value. 

3. CALCULATION OF THE MULTIPLICITY 

Changing the coordinate system if necessary, we may assume the (n-2)-dimensio- 
nal subspace S is given as the intersection of two hyperplanes Xo = 0 and X1 = 0. 
Then we can parametrize N as uoXo + ulX1 = 0. Any hyperplane in NH different 
from the hyperplane Xo = 0 at infinity is parametrized by numbers x1 = X1/X0 = 
-uo/u1. Therefore, hyperplanes S V A, S V Pj and S V Qj,k in Theorem 2 are 
parametrized by the x1-coordinate of points A, Pj and Qj,k respectively. 

We have some remarks on numerical calculation. 
(1) Ej,k ej,k becomes a good approximation if the original h is sufficiently near to 

zero. To eliminate constants Cj,k in the equation (11), we take two numbers 
very close to zero h, (v = 1, 2), and calculate the ratio: 

(13) Cj,k = log IPj,I1 - qj, k1,l) I log IPj,1(2) -qj,k,l )1 (13) e~~~~~~,k ~~log Ihi I - log Ih2j 

where pi(v) (pj,i(v)P... ,pj,n()) and Qj,k() (qj,k,l1( ),.q.,k,n(')) are 
obtained from hv (v = 1, 2). 

(2) Let A = (a,,... ,an) be a coordinate representation. To distinguish clearly 
two united points S V A and S V 0, we take a point 0 = (01,... , ?n) not 
included in F and C and lo1 - al > Ihjl (for both h1 and h2). 

(3) Since we need only points P( on hyperplanes xl = a, + hV close to A, we 3 

take points P(v) within hypercubes 

Ix - a, < ch, X2 - a2I < ch'/(d2 dn) . . -a < d) 

v = 1, 2 ). Here c is a positive number determined experimentally. These 
boundaries are given by the exponenlt of Puiseux expansions of C around A. 

Now we present our method to calculate the multiplicity step by step. 
[Calculation of the multiplicity] 

(1) Calculate a root A to the system (1) using a numerical method (e.g. Newton's 
method or the homotopy method). 

(2) Take a point 0 remote from F, C and A. 
(3) Take two small values hv (v = 1, 2). 

(4) Calculate all intersection points Pj3() of the curve C and the hyperplane 
x1 = a1 + hv within the bound given above. 

(5) Calculate all intersection points Qj,k@() of the hypersurface F and the line 
joining 0 and pj(v) . 

(6) Calculate the exponents ej,k by the equation (13). 
(7) Zj,k eC,k is the multiplicity of A. 

Note 1. Since we choose S and 0 without testing whether condition 1 of the 
previous section is satisfied or not, the multiplicity value may be wrong in very few 
cases. But if we calculate the multiplicity with some different choices of S and 0, 
then we get true values of the multiplicity. 

Note 2. If some roots of the system are very close to each other, we cannot see 
whether a root in the problem is one of the clustered roots or a multiple root. In 
such a case, we have to separate such close roots (see [3]). 
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4. AN INTERVAL CONTAINING THE MULTIPLICITY VALUE 

We can obtain an approximate value of the niultiplicity in the above way. In this 
section, we show we can determine the exact value of the multiplicity for almost 
any choice of 0 and S. 

We denote by m the multiplicity of a solution A. We take two small values h1 
and h2 such that h1 > h2 > 0, and denote by m+ the approximate multiplicity 
value obtained from h1 and h2. Similarly we denote by m- the approximate value 
from -h1, -h2. 

We assume that S is represented as the intersection of the hyperplane Xo = 0 
and the hyperplane X1 = 0; and we remember that we are taking the hyperplane 
XO = 0 as the hyperplane at infinity. 

Proposition 2. If we take a point 0 such that the line joining two points Pi and 
O does not meet a hypersurface F at infinity, we have almost always 

m- < m < m+ or m+ < m < m-. 

Proof. For simplicity, we assume that the parametric value of the united S V A is 
zero. Then for each S V P (') the parametric value is h, and the defining equation 
cr(u, v) = 0 of the correspondence T satisfies o-(O, 0) = 0. 

We represent a (u, v) as a polynomial in a variable v, 

a(U, V) = To(U)Vd + Ti (U)Vd-1 + * + Td((U), 

where d = d... d, by Proposition 1. By the hypothesis that the line joining two 
points Pi and 0 does not meet F at infinity, we see that To (0) #& 0. Therefore we 
can set 

cro(u, v) =r (u, v) vd+ Pi (u)vd?-1+ +?pd(u), 

where P1 (u),... , Pd(u) are formal power series in a variable u. 
Now we suppose that a polynomial co (0, v) in a variable v is factorized as 

uro(0,v) = Al (V) 2(v), s.t. pi (0) = 0 and [2(0) # 0. 

By Hensel's Lemma (see [2]), uo0(u, v) is factorized as 

cr0 (U, V) = url (U, V)cr2 (U, V), with crI (0, v) I (v) andOc2 (0, V) = A2 (V), 

where a, (u, v) and 92 (U, v) are polynomials in v having formal power series in u as 
coefficients, and a, (u, v) converges for u sufficiently close to zero. When co (0, v) 0 
does not have roots different from zero, we set merely uo (u, v) = cl(u, v). 

Hence, roots v(v ) to o-(h ,v) = 0 satisfying 
Vk 

lim vk) = 
h, --+ 0 0 

are also roots to uri (h>!, v) 0. Since the equation (13) is represented as 

ek = logI9h/h2l 1(2) 
- h2 vk-h 

using a logarithm function with the base Ih1/h2 , we have 
S S =(l) -hi | 2 1 a (hl, hi) 
Zek 

= 
log1hi/h2l 2 ogh/2 

11 (2) log~~~h1/h2 7 u(h2h) k=l ~~k=l1Vk -h2 
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Now, we represent a, (u, u) as a formal power series 

51 (U, U) = CUM(1 + cl u + c22 
2 

) 

in a variable u. Since h, are sufficiently small, we have 
s cIh (1 + clhl) 

ek l1g1h1/h2l chm (1 + clh2) 
k=12 

after ignoring the terms in h, of order higher than mn + 2. Namely, 
m? ~m+logjh1/h I 1+cihi 1-c1h1 

+ '-- 
+ ?gl hi1/h2+j I h m cm + logjhi/h21 1 - clh2 

Therefore, we have only to show that 

(14) 
1 
t + cllhl: < 1 < h1- c1h1 

(14) 1~~~~~I+ cjh2 ?? -cjh2 
or 

(15) 1 - c1hi < 1 < i + c1h . 
1- cjh2 ?1? 1+ ch2 

Let us set h = h1, h2 = dh (O < d < 1) and cl = a + /3i. Multiplying 
1 + dah - d/3hi to both numerator and denominator and ignoring the terms of 
order 0(h2) or higher, we have 

l+cc1hi 1+ah+/3hi 1 + +(I+d)ah- a/3hi 
1 + cjh2 -I + dah + dl3hi 1 + 2dah 

We have three cases a > 0, a < 0 and a 0. If a > 0, since 0 < 2dah < (1 + d)ah, 
we have 

I1-(?+d)ah < 1< I (+(1+d)ah 
I 1-2dah 1< 1 +2dah 

and since h is a very small positive number, we have m- < m < m. 
If a < 0, since (1 + d)ah < 2dah < 0, we have 

1+ (1 + d)ah < < I 1-(1 + d)ah 
1+2dah I1 1-2dah 

i.e. m+ < m < m- . 
If a = 0, since the term in h of order one vanishes, we cannot see whether the 

equations (14, 15) are satisfied or not. But since cl = a + /3i and cl depends on 0, 
if we choose 0 properly, then we can get a non-zero a. C 

Summing up the calculation of an interval, we can write as 
[Calculation of an interval] 

(1) Select two small positive numbers h, (v= 1, 2). 
(2) Repeat multiplicity algorithm for h, (v= 1, 2) and -h, (v = 1, 2). 

Note 3. In the statement of Proposition 2, we used the words "almost always". 
This means the statement is valid except for the case where a (= the real part of 
the coefficient cl) in the above proof is zero. This case is very rare as illustrated in 
the following Example. Moreover, this example shows that even if this case happens, 
we have two good approximations of the multiplicity from one side of the multiplicity 
value. 
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Example. We show an example of one sided approximations: 

(16) { x _y 0 

We calculate the multiplicity of (0, 0) choosing the point 0 as (01, 0) with a variable 
coordinate ol. 

Multiplicity with o= 1 
h1, h2 0.01, 0.001 -0.01, -0.001 

multiplicity M+ = 1.00009 M- = 1.00008 

From this table we see that the multiplicity is 1, and this is apparently the correct 
value. To show the reason why this one sided approximation occurs, we calculate 
the homogeneous polynomial defining the image curve of the correspondence: 

02u2v2 _Ul(02UOV2- 2ouovovl + 
UOV2 + 2oUV2-UlV2). o1u0v1 iouv 2o0vv1 u01 2 1uv u1) 

From this polynomial, by setting u = ul, uo 1, v = v1 and vo = 1, we have 
the affine defining polynomial: 

-o1u + 2o,uv + (ol u - 2oju + u2)V2. 

Calculating the Puiseux expansions of this curve at (0,0), we have two branches: 

(17) b_ = u1!2 - 1/o1u + (1 + o1)/o02u3/2 + , 

b2 = -U 1/2 _ 1/o1u _(I + 01) /02u3/2 +*--. 

Then the defining polynomial a,(u, v) = (v - bi)(v - b2) is expanded as 

-olu - 2ol2 + 01v2 + 2Uv - ol2u3- U - 2-2o1u3-3 + higher order terms 
4 

Putting v = u, we have 

-04u - (o 2 -04)U2 - (02 + 2o1 + i)U3 + 0(4) 
o-1 (U, U) = o41 

1 

01 

If we choose -1 or 1 for ol (roots of o2 -04 = 0, o? should not be equal to 0), the 
coefficient of u2 vanishes and we have 

(J(u,u) = -u+0(4) 

or 
o1 (U, U) = -U-4U3 + 0(4). 

The last expression shows that the approximation is only from one side and the 
former one shows that we cannot say whether we can obtain an interval or not. D 

5. EXECUTION TIME 

We discuss execution time required to calculate the multiplicity. If the scale of 
a system of algebraic equations is not so large, we can obtain all solutions with 
multiplicity by tracing the paths in the homotopy method. Since the homotopy 
method is well known, we take the execution time of the homotopy method as a 
standard, and we compare with the standard the execution time spent to calculate 
an interval containing the multiplicity value. 

First we show the detail of our calculation of the homotopy method. We use 
both symbolic and numerical computation. Given a system of algebraic equations 
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fi(x),... , fn(x) (resp. g1(x),... , gn(x)) we denote by F(x) (resp. G(x)) the vector 
(f (x), . . fn (x)) (resp. (g1 (x), , gn (x))) ) 

(1) output F(x) and G(x) to a file for later numerical computation symbolic 
computation 

(2) make the homotopy H(x, t) = tF(x) + (1 - t)G(x) and output it to a file 
symbolic computation 

(3) make a matrix DH = [dH/dx dH/dt] and output it to a file - symbolic 
computation 

(4) make a matrix DF = [dF/dx] and output it to a file - symbolic computation 
(5) tracing paths by the predictor-corrector method numerical computation 
To execute the calculation of an interval, we proceed as follows: 

(1) calculate the point A - numerical computation 
(2) select the point 0 - no computation 
(3) select the values h, - no computation 
(4) calculate points P(v) 3 

(a) substitute ai + h,, to xi in f2(x), . . , fn (x) - symbolic computation 
(b) call the homotopy method above for f2 (x), . .. , fn(x) 

(5) calculate points Q(g) 
(a) make a polynomial of single variable fi(alxl+3,5... , --Xn-ix1+n-1i X1) 

and output its coefficients in a file symbolic computation 
(b) determine a's and 3's - numerical computation 
(c) solve an algebraic equation to obtain the points Q numerical compu- 

tation 
(6) calculate the exponents ej,k numerical computation 
(7) calculate Ejk ej,k - numerical computation 
(8) repeat 3. - 7. for -h, 
In the following table, we compare the execution time for the homotopy method 

and for the calculation of an interval containing the multiplicity value. Size means 
the product of degrees of polynomials in the given system of algebraic equations. 
The computation was executed on an FUJITSU VPX-120 with 17 MIPS, scalar 
calculation 17 MFLOPS and vector calculation Max, 170 MFLOPS CPU. 

In Table 1, we see symbolic computation takes more than half of the total execu- 
tion time in the calculation of an interval. But, if the system of algebraic equations 
is large, then tracing paths becomes heavy. And if we use a work station, we can 
expect that the symbolic calculations are executed in a shorter time (maybe less 
than 1/10 each). So we compare execution time of path tracing of the homotopy 
method and that of calculation of an interval. When we trace paths of the homo- 
topy, we cannot predict after how many steps we reach the goal. So, we cannot 
give the complexity. However, we have a simple formula that gives approximately 
the ratio of execution time of homotopy and calculation of the interval as we show 
in the following. 

When we solve the system (1) by the homotopy method, the number of paths 
are 

d1 xd2 x ...xdn 

where di is the total degree of the polynomial fi in (1). As the mean value of path 
tracing in n-variable homotopy, we write +(n) . Then the total execution time will 
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TABLE 1. Execution time (seconds) 

Size method Symbolic Numeric Numeric Total 
(homotopy) (others) 

4 x 4 homotopy 0.270 2.399 0 2.669 
interval 2.410 0.222 x 4 0.014 3.312 

6 x 6 homotopy 0.240 7.033 0 7.273 
interval 2.800 0.676 x 4 0.062 5.566 

10 x 10 homotopy 0.270 32.84 0 33.11 
interval 4.150 1.447 x 4 0.282 10.22 

3 x 2 x 3 homotopy 0.240 5.482 0 5.722 
interval 3.600 1.226 x 4 0.042 8.546 

5 x 5 x 5 homotopy 1.340 142.6 0 143.9 
interval 25.46 14.47 x 4 0.215 83.56 

7 x 7 x 7 homotopy 1.670 938.0 0 940.0 
interval 45.11 64.24 x 4 0.440 302.5 

3 x 3 x 3 x 3 homotopy 0.940 32.22 0 33.16 
interval 25.61 7.131 x 4 0.194 54.33 

4 x 4 x 4 x 4 homotopy 1.810 284.3 0 286.1 
interval 51.47 43.43 x 4 0.482 225.7 

be approximately 

0(n) x di x d2 x... x dn. 

In the calculation of the interval, we eliminate xj from x1, x2.. , xn by substi- 

tuting the number a3 + h,. We introduce the symbol dj)) defined as 

Pi) = deg fi (X1l ** xj = aj + hv, .. Ixn), 

where xj = aj + hV means that we substitute a constant number aj + h, to xj. 
So d(j) is the degree of the polynomial fi(x , ,xj= aj + hr, ,xn). We have 

d(j) < di for each j. Let D(j) be the product 
n 

D?j) = min { JJ di}j 1<r<n 
i#r,i= 1 

If we choose an index j satisfying 

D$?) mii D Ir 
1<i<n 

then the number of paths to trace is minimal for the computation to obtain the in- 
terval containing the multiplicity value. In our program, we fix simply j = 1, r = 1, 
we eliminate x1 and we treat a system of algebraic equations f2,... I fn as fol- 
lows. We trace paths for the new system of algebraic equations f2, I * fn with x1 
eliminated. In this case the number of total paths is 

d x() X d x() X ... x d(l) 

and since the number of variables is n - 1, the execution time of the homotopy 
method for this new system is 

0(n -1) x d1) x d(1) x x d(l) 
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In the calculation of the interval, since we repeat the homotopy method with four 
constants ?h1, ?h2, the execution time of the calculation of the interval is 4 times 
the above value: 

4 x 0(n-1) x d1) x d(1) x ...x d() 

The ratio of calculation time is 

4 x 0(n-1) x d1) x d(1) x ...x d() 
0(n) x di x d2 x ...x dn 

If d(l) = di, then the above formula is expressed simply as 

40(n -1) 

0(n)dl 
If we set 0(n) n, then we have the formula 

(18) n(md-) 

In the following table, we see that a ratio given by the formula (18) is a rough 
approximation to an experimental value. 

Formula 0.50 0.33 0.20 0.89 0.53 0.38 1.00 0.75 
Experiment 0.37 0.38 0.18 0.89 0.41 0.27 0.89 0.61 

6. EXAMPLES 

We present some examples of calculation of the interval containing the multi- 
plicity value. 

Example 1. The multiplicity of a solution (x, y) = (0,0) to the system 

(19) f(X2 + y 2)2+ 3x2y-Y3 = 0 
(19)~~~~ (x2 + y2)3 - 4x 2y2 = O 

is 14 (see [4]). Table 2 is the result of the calculation of the interval after setting 
O = (1, 1). Since there is only one integer 14 in the interval [m+, m-1, we see that 
the multiplicity of (0, 0) is 14. 

Example 2. A system2 
5 

(20) fi(xI,. X5) =X)2x+Zxj-2xi-4 (i=1, ...,5) 
j=1 

has a solution (1, 1,1,1,1) with the multiplicity sixteen. Using the homotopy 

TABLE 2. Multiplicity to the system (19) 

hi, h2 0.01, 0.001 -0.01, -0.001 
multiplicity rM+ = 13.9679 m- 14.0321 

2This example is taken from [5]. But the original coordinate system does not satisfy Condition 
1, so we use a new coordinate system. 
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TABLE 3. Multiplicity to the system (20) 

hl, h2 0.001, 0.0009 -0.001, -0.0009 
multiplicity M+ = 15.9858 M- = 16.0014 

TABLE 4. Multiplicity to the system (21) 

hi, h2 0.001, 0.0009 -0.001, -0.0009 
multiplicity M+ = 638.3011 M- = 637.6967 

method, we get the numerical solution 

(1.000000004 - 0.1261539688 x 10-14i, 1.000000000 + 0.3228171677 x 10-14i, 

1.000000006 - 0.8244469500 x 10-15i, 1.000000003 - 0.1568655907 x 10-14i, 

0.9999999868 + 0.4264708798 x 10-15i). 

To this numerical solution, Table 3 shows the bounds obtained by the calculation 
of the interval, where we take a point 0 as (-1.1,1,0,0,0). We see the multiplicity 
is sixteen. 

Example 3. A system 

10 

(21) fi(xi, * * * , xio) = xi + E xj-2xi-9 (i =1, = I , 10) 
j=1 

has a solution (1, 1,1,1,1,1,1,1,1,1). Using the homotopy method, we obtain the 
numerical solution 

(1.000000002 - 0.5003286613 x 10-08i, 0.9999999991 + 0.4396894894 x 10-08i, 

0.9999999956 + 0.5617517134 x 10-08i, 0.9999999992 + 0.4789822539 x 10-08i, 

0.9999999982 + 0.4748659958 x 10-08i, 1.000000002 - 0.4640685652 x 10-08i, 

1.000000003 - 0.5154107100 x 10-08i, 1.000000004 - 0.2181786934 x 10-07i, 

0.9999999904 - 0.1821846643 x 10-08i, 1.000000003 - 0.4562487468 x 10-08i). 

To this numerical solution, we have Table 4 by the computation of an interval with 
0 = (-1,1,1,0, . . . ,0). We have the multiplicity 638. 
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